Graph Learning Reading List for Newcomers

This reading list is designed to help newcomers to the Network Science Lab @ CUK understand the fundamental concepts and models in graph learning.

Last updated: Dec 14th, 2023


Shallow Graph Models

  • DeepWalk: Perozzi, B., Al-Rfou, R., Skiena, S. (2014). DeepWalk: Online Learning of Social Representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2014), 701–710.
  • node2vec: Grover, A., Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), 855–864.
  • LINE: Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q. (2015). LINE: Large-scale Information Network Embedding. Proceedings of the 24th International Conference on World Wide Web (WWW 2015), 1067–1077.
  • Asymmetric Transitivity: Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W. (2016). Asymmetric Transitivity Preserving Graph Embedding. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), 1105–1114.
  • SDNE: Wang, D., Cui, P., Zhu, W. (2016). Structural Deep Network Embedding. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), 1225–1234.
  • GraRep: Cao, S., Lu, W., Xu, Q. (2015). GraRep: Learning Graph Representations with Global Structural Information. Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM 2015), 891–900.
  • SkipWalk: Perozzi, B., Kulkarni, V., Chen, H., Skiena, S. (2017). Don’t Walk, Skip!: Online Learning of Multi-scale Network Embeddings. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2017), 258–265.
  • struc2vec: Ribeiro, L. F. R., Saverese, P. H. P., Figueiredo, D. R. (2017). struc2vec: Learning Node Representations from Structural Identity. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017), 385–394.
  • subgraph2vec: Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S. (2016). subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs. arXiv:1606.08928.
  • metapath2vec: Dong, Y., Chawla, N. V., Swami, A. (2017). metapath2vec: Scalable Representation Learning for Heterogeneous Networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017), 135–144.
  • Deep Gaussian Embedding: Bojchevski, A., Günnemann, S. (2018). Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking. International Conference on Learning Representations (ICLR 2018).

Deep Graph Models

Recurrent GNNs

  • Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R. (2015). Gated Graph Sequence Neural Networks. arXiv:1511.05493.
  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., Dahl, G. E. (2017). Neural Message Passing for Quantum Chemistry. Proceedings of the 34th International Conference on Machine Learning (ICML 2017), 1263–1272.

Graph Autoencoders

  • Wang, D., Cui, P., Zhu, W. (2016). Structural Deep Network Embedding. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), 1225–1234.
  • Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W. (2018). Structural Deep Embedding for Hyper-Networks. Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), 426–433.

Spatial GNNs

  • Hamilton, W. L., Ying, Z., Leskovec, J. (2017). Inductive Representation Learning on Large Graphs. Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS 2017), 1024–1034.
  • Chen, J., Ma, T., Xiao, C. (2018). FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. International Conference on Learning Representations (ICLR 2018).
  • Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C. (2019). Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2019), 257–266.
  • Li, G., Xiong, C., Thabet, A. K., Ghanem, B. (2020). DeeperGCN: All You Need to Train Deeper GCNs. arXiv:2006.07739.
  • Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y. (2020). Simple and Deep Graph Convolutional Networks. Proceedings of the 37th International Conference on Machine Learning (ICML 2020), 1725–1735.

Attentive GNNs

  • Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y. (2017). Graph Attention Networks. arXiv:1710.10903.
  • Ye, Y., Ji, S. (2023). Sparse Graph Attention Networks. IEEE Transactions on Knowledge and Data Engineering (TKDE), 35(1), 905–916.
  • Li, H., Huang, S. H., Ye, T., Xiuyan, G. (2019). Graph Star Net for Generalized Multi-Task Learning. arXiv:1906.12330.
  • Kim, D., Oh, A. (2021). How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision. International Conference on Learning Representations (ICLR 2021).
  • Wang, G., Ying, R., Huang, J., Leskovec, J. (2019). Improving Graph Attention Networks with Large Margin-Based Constraints. arXiv:1910.11945.

Limitations of GNNs and Their Solutions

  • Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., Grohe, M. (2019). Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019), 4602–4609.
  • Yu, H., Yuan, J., Yao, Y., Wang, C. (2022). Not All Edges Are Peers: Accurate Structure-Aware Graph Pooling Networks. Neural Networks, 156, 58–66.
  • Shu, J., Xi, B., Li, Y., Wu, F., Kamhoua, C. A., Ma, J. (2022). Understanding Dropout for Graph Neural Networks. Proceedings of the Companion Volume of The Web Conference (WWW 2022), 1128–1138.

Transformers with GNNs

  • Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y. (2021). Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021), 1548–1554.
  • Nguyen, D. Q., Nguyen, T. D., Phung, D. (2022). Universal Graph Transformer Self-Attention Networks. Proceedings of The Web Conference 2022 (WWW 2022), 193–196.

Structure-Aware Graph Transformers

  • Chen, D., O’Bray, L., Borgwardt, K. M. (2022). Structure-Aware Transformer for Graph Representation Learning. Proceedings of the 39th International Conference on Machine Learning (ICML 2022), 3469–3489.
  • Kim, J., Nguyen, T. D., Min, S., Cho, S., Lee, M., Lee, H., Hong, S. (2022). Pure Transformers Are Powerful Graph Learners. arXiv:2207.02505.
  • Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T. Y. (2021). Do Transformers Really Perform Badly for Graph Representation? Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 28877–28888.
  • Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., Bresson, X. (2022). Graph Neural Networks with Learnable Structural and Positional Representations. International Conference on Learning Representations (ICLR 2022).
  • Hussain, M. S., Zaki, M. J., Subramanian, D. (2022). Global Self-Attention as a Replacement for Graph Convolution. Proceedings of the 28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2022), 655–665.
  • Zhao, H., Ma, S., Zhang, D., Deng, Z. H., Wei, F. (2023). Are More Layers Beneficial to Graph Transformers? International Conference on Learning Representations (ICLR 2023).
  • Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania, P. K., Coates, M., Torr, P. H. S., Lim, S. N. (2023). Graph Inductive Biases in Transformers without Message Passing. Proceedings of the 40th International Conference on Machine Learning (ICML 2023), 23321–23337.
  • Ma, X., Chen, Q., Wu, Y., Song, G., Wang, L., Zheng, B. (2023). Rethinking Structural Encodings: Adaptive Graph Transformer for Node Classification Task. Proceedings of The Web Conference 2023 (WWW 2023), 533–544.
  • Mao, Q., Liu, Z., Liu, C., Sun, J. (2023). HINormer: Representation Learning on Heterogeneous Information Networks with Graph Transformer. Proceedings of The Web Conference 2023 (WWW 2023), 599–610.
  • Mialon, G., Chen, D., Selosse, M., Mairal, J. (2021). GraphiT: Encoding Graph Structure in Transformers. arXiv:2106.05667.
  • Wu, Z., Jain, P., Wright, M. A., Mirhoseini, A., Gonzalez, J. E., Stoica, I. (2021). Representing Long-Range Context for Graph Neural Networks with Global Attention. Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 13266–13279.
  • Rampásek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., Beaini, D. (2022). Recipe for a General, Powerful, Scalable Graph Transformer. Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).
  • Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., Sinop, A. K. (2023). Exphormer: Sparse Transformers for Graphs. Proceedings of the 40th International Conference on Machine Learning (ICML 2023), 31613–31632.

Graph Transformer and Sampling Strategies

  • Zhao, J., Li, C., Wen, Q., Wang, Y., Liu, Y., Sun, H., Xie, X., Ye, Y. (2022). Gophormer: Ego-Graph Transformer for Node Classification. Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).
  • Coarformer Team (2021). Coarformer: Transformer for Large Graphs via Graph Coarsening. OpenReview (2021).
  • Zhang, Z., Liu, Q., Hu, Q., Lee, C. K. (2022). Hierarchical Graph Transformer with Adaptive Node Sampling. Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).
  • Chen, J., Gao, K., Li, G., He, K. (2023). NAGphormer: A Tokenized Graph Transformer for Node Classification in Large Graphs. International Conference on Learning Representations (ICLR 2023).